
.I_-_.-.-.... - - -N89-16319 /q; - >- 'J

/ - /

TRANSPORTABILITY, DISTRIBUTABILITY, AND REHOSTING EXPERIENCE WITH A

KERNEL OPERATING SYSTEM INTERFACE SET

F. C. Blumberg, A. Reedy, and E. Yodis
Planning Research Corporation
1500 Planning Research Drive

McLean, Virginia 22102

For the past two years, PRC has been transporting and installing a software
engineering environment framework, the Automated Product Control Environment
(APCE), at a number of PRC and government sites on a variety of different hardware.
The APCE was designed using a layered architecture which is based on a
standardized set of interfaces to host system services. This interface set, called the
APCE Interface Set (AIS), was designed to support many of the same goals as the
Common Adar"' Programming Support Environment (APSE) Interface Set (CAIS):
transportability of programs; interoperability of data; and distributability of the
environment processes and data. However, the evolution of the AIS has been quite
different than that of the CAE. The AIS was designed to support a specific set of
lifecycle functions and to provide maximum performance on a wide variety of operating
systems.

The APCE was developed to provide support for the full software lifecycle. Specific
requirements of the APCE design included: automation of labor intensive
administrative and logistical tasks; freedom for project team members to use existing
tools; maximum transportability for APCE programs, interoperability of APCE database
data, and distributability of both processes and data; and maximum performance on a
wide variety of operating systems. The functions supported by the APCE include:
configuration management for lifecycle products; traceability; change and release
control; project control and reporting; management for all levels of testing including
integration and system testing; and support for standards enforcement. The AIS
design is critical in supplying transportability, interoperability, and distributability. The
AIS design is also critical in providing the basis for APCE performance.

This paper gives a brief description of the APCE and AIS, a comparison of the AIS and
CAlS both in terms of functionality and of philosophy and approach, and a
presentation of PRC's experience in rehosting the AIS and transporting APCE
programs and project data. Conclusions are drawn from this experience with respect
to both the CAlS efforts and the Space Station plans.

1Adam is a registered trademark of the U.S. Government Ada Joint Program Office.

0.2.6.1

The A W E has been designed based on a separation of concerns between the
functionality of the environment framework or architecture and the functionality
Of took. The environment provides control, coordination, and enforcement of
standards and policy and acts as repository for information (including software
lifeCYCle products). The tools assist the project members in the actual creation
O r modification of the products (software and associated documentation and
lifecycle products).

The APCE supports a software lifecycle process paradigm. The software
lifecycle is viewed as a series of development or maintenance projects. Project
members fall into three board categories: managers, developers, and testers.
Developers include all project members who create or modify lifecycle products:
requirements analysts, designers, coders, etc. Testers include the traditional
categories of configuration management and quality assurance personnel and
personnel involved in product reviews and audits. Projects have phases which
can be defined in terms of the products developed during each phase. The
APCE requires a testing process for the products of each phase. The paradigm
is illustrated in Figure 1 which uses Mil-STO-2167 phases and products as an
example. The APCE is configurable for different phases and products as well
as for different methods of integrating products (software or documents) from
components.

The functions provided by the APCE framework include:

0

0

0

0

0

0

0

0

configuration management of software, documentation, and test
procedures;

automated status reporting and tracking of product components,
work packages, and changes;

maintenance o! traceability from requirements through development
to code;

automated test bed generation and support for testing from unit
testing through system testing:

maintenance of project database;

automated integration and release control for products:

enforcement of selected standards and procedures through testing;

project specific environment configuration.

The user interface consists of a set of menus for the major subsystems. The
functions provided by the five major subsystems are summarized below.

0.2.6.2

. -.

D.2.6.3

w
3
CY w
v)

3
5
w
W
0:

0
0 a

Generation S m : The generation subsystem allows selected privileged
users to configure the APCE to the specific project in terms of user groups and
organization, work packages and schedule, project phases, products, and
product integration structure. The APCE can be reconfigursd to reflect changes
to the project structure and organization as needed. The generation subsystem
uses this information to organize the project database.

e

DeveloDment S u m : The development u x y s t e m allows developors to
Select the data or products associated with their tas4 a1.d 'c , xti.irn their finished
products back into the database when thrv 0-r . wiy 'x testing. The
developers can use the software tools a*..' (l ~ k : w i r host system or
workstation to work on the products. The curre ..! ~ 6 7 5 . ;I!? ArCE does not
direct!y control the use of these tools.

Test Su- : The test subsystem suoports the tastsrs in the bbilding,
execution, and reporting of the product tests. The test scbsystem allows the
testers to create test procedures, which are then managed by the APCE. The
APCE will build test beds and integrate product components for the testers, who
will then execute tests. The testing process provides the methods for
enforcement of standards and policies. The testers report the test results
through the test subsystem. Testers are also responsible for system release in
the APCE paradigm and the test subsystem performs this function.

Chanae Co ntrol Subsvsteq : The change control subsvstem allows managers
to enter change requests into the system and to define stop dates for release 0 support.

Peoort S u m : The report subsystem allows managers and other APCE
users to get reports on the current status of changes, test procedures, and
releases. I t also gives reports on project status by task or by product
component. Additional reports provides impact analysis for proposed changes
and other traceability information.

ENVIRONMENT GOALS

The goals of the APCE design are:

o to provide management and control for the full software lifecycle
process;

o to automate the labor intensive administrative and logistical
overhead functions:

o to allow full use of existing hardware, operating systems, file
management/DBMS, and communication resources.

The last goal implies a series of subgoals. An environment should be
distributable across heterogeneous operating system configurations,
heterogeneous file rnanagement/DBMS facilities and use the available
communications facilities as well as heterogeneous hardware configurations.

0.2.6.4

The control framework must be easily transportable to new hardware and host
systems at reasonable cost. The environment database, including the lifecycle
products and their relationships and attributes, must be easily moved between
environment instances. There must be no performance penalties for usjag the
environment. It must cooperate at some level with existing operating systems to
take advantage of their security and performance features. Finally, the
environment must allow the use of exist!ng software tools and allow flexibility for
retooling as necessary.

ROLE OF THE A P E INTERFACF SFT

The basic architecture of the APCE is best described as "Stoneman inspired but
data coupled". The system is layered as illustrated by Figure 2. The host
system (s) provide basic services such as operating system services, file
management system/access mechanism or database management system,
access controls, and cornmnications mechanisms as needed for the
configuration. The communications facilities are needed if distribution,
workstations, or remote test beds are desired. The software engineering
environment instance based on the APCE is layered on top of these services.
The instance provides users with project specific tools and procedures which
will usually exercise the host services directly and the APCE major subsystems
which exercise the host services through the APCE Interface Set (AIS).

Since the APCE major subsystems use AIS calls, !he APCE is transported to a
new hardware/OS/DBMS configuration by rehosting the AIS. Thus, the AIS
provides the Kernel interface described by Stoneman and supports the goal of
distribution. Since all database accesses must be made through the AIS, the
AIS also supports the interoperability of project data.

lMPLEMFNTATlON PHILOSOP H\1

The AIS design reflects the implementation philosophy of the APCE as a whole.
The architecture of the APCE is data coupled. That is, the APCE subsystems do
not interface directly witti each other; rather, they interface via the AIS to the
project database. The APCE adopts an open system approach ;awards the use
of third party tools. The APCE controls lifecycle products which are entered into
the database through user interaction with APCE subsystems. Thus, there are
no constraicts on the tools used to develop the products. For maximum
performance, the AIS is designed to function in conjunction with a modern
operating system rather than on a bare machine. Tools do not have to be
rehosted to tho AIS in order to be used.

The AIS was developed by deflnlng a set of transportabil ity r u l e s
that provide the maximum independence for applicolions (tools, programs. etc.)
from the run time environment. For maxlmurn transportabi l i ty, it wzs
determined that the applicatlon must have a logical view of the opera:lny
services, the database services, communications services and the data it uses.
The industry is evolving toward this conclusion, however, only a step at a time.

D.2.6.5

SEE

HOST
06, DBMS, & COMMS.

StW & HtW

I N STA LLA T I 0 N
CAPABILITIES

APCE

FIGURE 2: APCE STATIC VIEW

[I266

NO INTERFACE
ACROSS THIS L IkE I

As an example, currently UNIXW2 is considered transportable and i t does
provide hardware independence, However, i t does not provide applicatio 7

independence any more than any other operating system. Accepting a
operating system as the basis for transportability provides the application I

highly constrained set of system services, database services, and
communication services which may adversely affect the applications
performance. Therefore a set of logical service interfaces was implemented that
can be mapped to any operating system, file management /database
management system and communication protocols.

This AIS implementation has been proven transportable over a wide range of
operating systems, file management/database management systems, and
hardware. The AIS design approach assumes that the host system has been
developed by the vendor to take full advantage of the hardware features of the
computer. The host system should provide performance achievable on1 I
through intimate study of the hardware system. The AIS takes advantage of t t
host system performance and does not try to duplicate it. The performance
the AIS should be the same as that of the services supplied by the host systen

The AIS assumes that the following features t i e supplied by the host system'

o file management system/access mechanisms or dat abas

o access controls;

management system;

o command processor with command script feature;

o communications mechanism (e.g. VAXm3 DECnet) between host(s)/
workstations(s)/targets(s) if distribution or remote workstations or
remote test beds are desired.

The CAlS had no impact on the APCE development, however both the CAlS
and the AIS had similar goals. The intent of both interfaces sets was to achieve
transportability of tools between environments and to achieve interoperability of
data between environments. The CAIS was in response to a need in the DoD
for cost reduction and commonality of tools for software development. The
same requirement fostered the AIS developed within PRC. PRC has many
software development contracts running concurrently, and each contract has
different required hardware, tools, and methods. Therefore, PRC requires an
environment that is adaptable, transportable and allows interoperability of data
and excellent performance on any host system,

The AIS strategy is based on a layering of system services rather than on a
specific system service interface model (such as the node model of the CAIS).

2UNIXW is a registered trader ark of Bell Laboratories.
3VAXTM is a registered trademark of Digital Equipment Corporation.

0.2.6.7

ORlOlNAC PAGE t8
OF Pot? QUALITY

The APCE software is based on an interface into which the host system
setvices that satisfy the Interface specllicatlons are mapped. The AIS design is
based on the expected availability of certain host system services. If a service is
not directly available, then extra layers of software which provide the needed
enhancement are created below the interface layer to satisfy the requirement.

Both the CAlS and the AIS attacked the problem at the interface layer between
operating system services and the application programs. See Figure 3,
AWCAIS Comparison, for AIS/CAIS comparison. As the diagram illustrates,
the AIS provides services at a slightly higher level of abstractness than the
CAIS. In addition, the AIS already has additional interfaces operational (DBMS,
Communications) that the CAlS has not implemented as can be seen in Figure
4, CAIS/AIS Major Functions. The CAlS also requires a significantly greater
number of functions primary because of the node management requirement.
The AIS terminal I/O implementation currently only handles form management
functions, and therefore does not provide as rich a set of features as the CAlS
terminal I/O provides.

The primary difference between the AIS and the C A E is the concept of the
node model. The node model provides a method of organizing-files, directories,
devices, queues, and processes into a form that can be manipulated by any
APSE tool on any host that implements the CAE. The node model is similar to
the implicit node model within the UNIXW operating system with some
extensions. The AIS embraces the concept that applications (programs, tools)
require only a logical view of the services, Therefore, the interface functions
should be mapped into the existing system services providing these
capabilities.

The AIS provides only the logical view of the system services to the application
which accomplishes two goals, total application independence and improved
performance. Figure 5 , CAIS/AIS Implementation Differences, illustrates each
implementation.

Application independence is attained because dependence on structural or
physical implementation of each service has been removed from the
applications domain. This has not been attained in the CAlS because each
application has knowledge of the node mcdel and therefore any change to the
node model will require a change to all applications dependent upon that
structural knowledge.

The direct mapping of AIS services to system services enables an AIS
implementatlon to operate as efficiently its host system. The CAIS, however,
superimposed a control structure (the node model) on top of existing services
that may llmlt performance on a given CAlS implementation.

0.2.6.8

4

INCREASING
DEGREE O f
ABSTRACTNESI
FROM MACHINE
SP EClFlClTY

1 L - - b

CURRENT APPLICATION SOFfWARE

SYSTEM SERViCES

OPERATING SYSTEM
(01% DBMS, COMM.)

R t

IDEALLY, THE INTERFACE LAYER IS JUST WIDE
ENOUOH TO ACHIEVE THE DESIRED
FUNCTIONALITY AND MAXIMUM PORTABILITY

INCREASING
APPLICATION
SPEC1 F I C I N

IDEALLY, THE
INTERFACE
LAYER IS AS
THIN AS
POSSIBLE FOR
PORTABILITI

INCREASING
IMPLEMENTATION
SPECIFICIlY

FIGURE 3: AIS/CAIS COMPARISON

0.2.6.9

co
0
F

0.2.6.10

n

0.2.6.1 1

The APCE is currently available on six different computer systems:
VAX/VMSW4, ROLM/AOS.VS, IBMIMVSMS and VM, and Intel 310 with
XENIXW6. APCE processes can be distributed to the Macintosh'7 and soon to
the IBM PC. The rehosting process for the AIS takes approximately 2 calendar
months for a mainframe and 1 month for a mini- or micro-computer. Figure 6,
Current AIS Rehosts, illustrates the current systems the APCE is available On
and the time it took to accomplish this, both in months and staff months.

APCE transportability has been attained using the AIS and a 'C' compiler. All
APCE framework applications were designed using Adaw POL and
implemented in IC'. This was done because the Ada compilers were not
available on all the hosts targeted for the APCE. The use of 'C' has not been
without problems. Current implementations are using five (5) different 'C'
compilers and as each new compiler has been introduced a 'C' subset has
been defined. All APCE applications must be normalized to any new subset.
This has entailed a five to ten percent code modification for each new subset.
However, all new applications use the subset and are completely transportable.
Because PRC must validate each 'C' compiler used for APCE code, the APCE
will be recoded in Adam when validated compilers are available.

The APCE has the advantage that it can be installed in an existing configuration
with minimal distruption of the current way of doing business. It provides a clear
transition path into a better disciplined engineering process and allows new
advances in automated tools to be incorporated. It does not, however, shield
the users from a need to understand the native operating system or tool
command language. This is not viewed as a disadvantage at this time since
standardization of these features does not seem to be possible. Premature
standardization of these features by an environment may ensure its technical
obsolescence or, at best, enforce a delay while new tools are rewritten or
rehosted. Such standardization is also not possible for a software house which
works with a wide client base with widely differing requirements and standards
for their software development and maintenance projects.

The APCE also does not provide the tight integration of tools. The user is still
responsible for ensuring that the output of one tool is suitably modified to be
acceptable as input for the next. This is one of the areas in which future work
needs to be done to relieve the users of the more clerical types of work.

4VMSTH is a registered trademark of Digital Equipment Corporation.
slBM/MVSm is a registered trademark of International Business Machines, Inc.
6XENIXm is a registered trademark of Microsoft Corporation.
7Macintochm is a registered trademark of Apple Computer, Inc.

0.2.6.1 2

?

0.2.6.1 3

The APCE framework provides signiflcant advantages and can be used by a
project without new hardware or significant retooling. It provides an immediate
benefit without locking out future advances in software tools and techniques by
managing the process and products rather than focusing on tools. The APCE
provides a different approach to the software engineering environment problem.

PRC has been successful in rehosting the APCE to six different operating
systems, with 4 different file managemenVdatabase management systems that
use 2 different sets of communication services without affecting the APCE
applications. Since these different APCE Instances can exchange project data
and any APCE application is transportable between APCE instances, the AIS
attain3 true appllcatlon Independence.

The benefits of using an AIS llke Interface opens the options for the
Space Station Software Support Environment (SSE) configurations.
No longer constrained to only hardware Independence by operating
system transportability; now a truly heterogeneous SSE can be configured.
This environment will be able to take advantage of all the required
technology while maintaining a consistent single environment through the
SSE applications (tools and framework). The SSE will be truly evolvable
since host services are divorced from the SSE itself therefore allowing new
services (O/S, DBMS, communication and hardware) to be introduced and
obsolete services to be retired without dlsruptlon to operations,

D.2.6.14

